

PRESENTATION ON

Advancing from DG to PV & DG PV Online Calculator

27 Nov. 2020, Ahmedabad, GJ, INDIA

By: Pulkit Dhingra

Founder & Director

AHAsolar Pvt. Ltd. (the "AHA")

Ver I.0

- About the AHAsolar
- About Replace of DG by PV
- Purpose of the Study
- Market Analysis of DG
- Business Models
- DGPV Calculator Tool
- Case Study Analysis

ΤΗΛ

Our Journey

EVENTS	DATES
Inception of Idea of AHA! Rooftop Solar Helper	October, 2015
Research Project of "AHA! Rooftop Solar Helper" Mobile App made live	March, 2016
Launch of Beta version of AHA! Rooftop Solar Helper Mobile App by Joint Secretary, MNRE, Gol	September, 2016
Inauguration of "AHA! Solar Jharkhand" Mobile App/ Portal by Secretary, Energy Department, GoJ	June, 2017
Inauguration of "AHA! Solar Gujarat" Portal for Gujarat Energy Development Agency (GEDA) & GiZ	September, 2018
Received Start-up India recognition by Department for Promotion of Industry and Internal Trade (DPIIT), GoI	March, 2019
Developed and Launch Digital Platform for managing World's Biggest Rooftop Solar Programme of 3200MW by 2020 for GUVNL & GIZ	September, 2019
Launch of AHA! Solar Helper Pro for EPC Company and Consultants	December, 2019
Developed All in One Software for EPC	June, 2020
Developed Online Tool to size PV for DG Replacement	August, 2020
Received Award for RE Digital Champion of the Year	November, 2020

Overview of AHA! Solar

Portfolio: **4** RTPV Govt. Digital Solution; **100+** AHA EPC Clients; **1.5** Lacs Consumers of AHA Platform; Presence in **5** States

Founded in 2017

- 2GW Advisory Experience for Utility Scale & RTPV Solar Project
- Fully Integrated Digital
 Platform Solution for
 Distributed Solar
 - Project Management; Design;
 Sales tracking & Subsidy
 Management
- Managing Projects of
 - 700 MW Rooftop Projects
- In-house **AI-based tools** for Shadow Analysis & Design Software
- Trained 1000+ SolarProfessionals

Our Clients

Government Clients

स्त्रमंत जवते Energy & Petrochemicals Department Government of Sujarat

GEDA

JREDA

GERMI

Ceutsche Gesetlischaft

Zusammenarbeit (SIZ) 6mbH

für Internationale

Development

Corporations

JJ SOLAR Right Decision - Bright Future

100+ B2B Companies

NEXUS

Clients across the value chain

Activities & Services

SECTOR

Development Corporation

Government/ Public Sector

Solar EPC Company/ PV Installer

Professionals/ Consultants

End Consumer

ACTIVITY / SERVICE

Digital Solution for Corporates

Solar Project Management

Solar PV Design Software

Digital Marketplace

Third Party Inspection

Market Research

Advisory (Policy & Regulation)

Data Analysis & Reports

About the Study

- Identify the Potential of DG & PV Market in India
- Segregate the Potential User Segments
- Develop Suitable Business Models
- Develop a DG PV Calculator for non-technical users

Background & Purpose of the Study

- Grid instability & power Deficiency in many states
- In 2020. an estimated of growth of 10 % sales volume of DG Sets
- Increase in DG set is a clear indication of increase in the back-up demand
- It opens up the market opportunity to integrate DG with Solar PV and Battery Energy Storage System (BESS) for better LCOE.
- Estimated increase of BESS market by 60% globally

DG SALES IN LAST DECADE

BESS: Battery Energy Storage System

Background & Purpose of the Study

- Grid instability & power Deficiency in many states
- In 2020. an estimated of growth of 10 % sales volume of DG Sets
- Increase in DG set is a clear indication of increase in the back-up demand
- It opens up the market opportunity to integrate DG with Solar PV and Battery Energy Storage System (BESS) for better LCOE.
- Estimated increase of BESS market by 60% globally

DG SALES IN LAST DECADE IN INDIA

BESS: Battery Energy Storage System

State wise Comparison of Power Outage against Diesel Price

Pulkit.d@ahasolar.in |

"Presentation to GIZ" at Ahmedabad (India); 27 Nov'20

State wise Comparison of Grid Tariff & Solar Tariff

Note: Some of the details are for utility scale projects so the landed tariff will be a bit higher

Pulkit.d@ahasolar.in |

"Presentation to GIZ" at Ahmedabad (India); 27 Nov'20

Demand and Power Outages

Total Energy Demand (in TWh/year)

2022

REGIONWISE AVERAGE POWER OUTAGE DURATION / MONTH

■NR ■WR ■ER ■SR ■NER

Year Industry

2027

2032

2017

2012

- As per CERC, DG sets installed across India had a cumulative capacity of 90,000 MW and has been growing at a rate of 5,000 MW to 8,000 MW every year.
- Energy demand will be more than 11,000 TWh/yr by 2032.
- To cater the energy demand the estimated supply of energy will be more than I 6000 TWh/yr by 2032
- Major demand will be in the industrial sector which will require 6404TWh
- Oil will cater to 28% of the Energy Supply which will be around 5000TWh / year
- DG usage volume will grow exponentially as a part of the value chain in the Oil and Gas industry
- Average generation loss in one year across the country was 122,982 MU due to grid failure

Market Research Summary

Sample States/UT	Grid Outage	Diesel Price	Grid Tariff	Solar Tariff	Potential of DG Replacement with PV
Gujarat	Low	High	Moderate	Low	Low as Grid outage is low and Solar tariff is also low. Potential: PV System
Delhi	Moderate	High	High	Moderate	High as Grid Tariff & Diesel Price both are high Potential: PV System + Small Storage
Jharkhand	High	High	Low	Moderate	High as Grid Outage & Diesel Price are high Potential: PV System + High Storage
J&K	High 🔶	High 🔶	Low 🖊	Moderate 🔶	High as Grid Outage & Diesel Price are high Potential: PV System + High Storage

Market Analysis of Storage

Storage market is estimated to be \$100 billion in next
 10 years (Globally)

Li-ion Vanadium Other

STORAGE MARKET SHARE

- Li-ion technology is expected to capture 60% of the market with a CAGR of approx. 23-25%
- Next most promising technology is Vanadium Redox Technology which is expected capture 30% of the market with a CAGR of approx.15-20%
- Earlier analysis shows that a potential of 122,292 MU generation loss is to be catered through DG
- This amount of generation can only be sustained through systematic linking of DG with Solar PV and Battery Energy Storage System (BESS)

- BM I: Replacing DG with Solar PV and storage
 - High Potential for places working completely on DG like mobile towers
- BM 2: DG integrated with Solar PV
 - High Potential for places where Grid Outages are low
- BM 3: DG integrated with Solar PV and Storage
 - High Potential for Places where Grid outages is frequent but of small durations like cities and town

Mind Map for DG PV Calculator

Pulkit.d@ahasolar.in

"Presentation to GIZ" at Ahmedabad (India); 27 Nov'20

Report Outcome – DGPV Calculator Tool

URL: https://dgpv.ahasolar.in

- The DGPV calculator is easy to use calculation tool for end users
- The rooftop solar capacity is directly calculated from electricity bill details of user
- The solar rooftop capacity is directly calculated from the contract load of the bill and provides a detailed shadow analysis report of the actual feasible capacity

Input Page

20

HOME DGPV CALCULATOR

idhar Jain Derasar 🛛 PALD uresi non Satara	Apparel Park	बनुमान मंदिर 🖓 Vastral B वनुमान मंदिर वरुवाल प्रय	ranch T
Google	Shah Alam Roza 👩 🔮 🖬 אוטאו	RA	Map data ©2020 Terms of Use Report a map erro
andmark	Unnamed Road, Rabari Colony, Amr.	Select Category *	Residential
Area Type *	sq mt 🗸	Rooftop Area *	5000
Average Monthly Bill (in ₹) *	65000	Average Monthly Units Consumed (in kWh/month)*	10000
Diesel Hours of Usage (hrs)*	2	Battery-inverter Hours of Usage (hrs)*	2
Average Demand (kW)	350	Standby/Critical load (kW)	200
Maximum Demand (kW)*	450	Battery System Voltage (V)	110
Customer Name *	XYZ	Customer Mobile *	9512186769
Project Name *	Project X2	Connected Load	500
Business Model			
Replacing the Diesel Genset With F	Rooftop Solar PV and Storage 🗸 🗸	Full Load O Critical Load	
Get Result BM	BM 2 BM 3 C	araphs	A stiveto M/i

The sizing of DG set, solar PV system, BESS and their financial modelling is based on actual consumption value, contract load and the roof space available for installing solar PV system. Average runtime for DG set is considered as 2 hours and Storage is 2 hours. The DG set is taken as 675 kW and based on the DG size the optimum Solar PV system size is 53 kW. Also, the business scenario is under Full Load running condition of the DG set.

PRESENTATION ON

Advancing from DG to PV & DG PV Online Calculator

26 Nov. 2020, Ahmedabad, GJ, INDIA

By: Pulkit Dhingra

Founder & Director

AHAsolar Pvt. Ltd. (the "AHA")

Ver I.0

Back-up Slides

Pulkit.d@ahasolar.in | "Presentation to GIZ" at Ahmedabad (India); 27 Nov'20

Selecting Area for Solar PV on the Software

Calculate Shadow Free Area

- Mark Coordinates on Map
- Build the outline to mark work area
- Create Shadow Objects

Software will calculate the Shadow Free Area and estimate the Solar PV can be placed on the Roof

SUN ANALYZER OUTPUT

Pulkit.d@ahasolar.in | "Presentation to GIZ" at Ahmedabad (India); 27 Nov'20

Model 1 – Replacing DG with RTPV and Storage

HOME

DGPV Calculator

DG PV CALCULATOR

Replacing the Diesel Genset With Ro	oftop Solar PV and Stora Full Load S	age Izing
Recommended BESS Capacity	1643	AH
Recommended PV Capacity	53	kW
Required Area of Rooftop for complete solarization	9806	Sa. Meter

Depreciation Type -

Financial Recomn	nendation For Straight Line De	epreclation			
Project IRR	15.7	96	Equity IRR	28.75	96
Project NPV	8.75	Rs. In Lacs	Equity NPV	11.79	Rs. In Lacs
Project Payback	6.46	Years	Equity Payback	3.74	Years
Estimated Project Cost	22.19	Rs. In lac	Estimated Project Cost without Subsidy	22.19	Rs. In Lacs
Average PV Generation	7498.42	kWh/hr			Back
					Activate W

Back to DGPV Calculator

Download PDF

Model 2 – Optimal Size of DG with RTPV

HOME DGPV CALCULATOR

Download PDF

DGPV Calculator

Optimal size of Diesel G	enset With Solar Full Load S	izing
Recommended DG Capacity	675	K₩
Recommended PV Capacity	53	kW
Required Area of Rooftop for complete solarization	7088	So. Meter

Depreciation Type -

Financial Recom	mendation For Straig	tht Line Depreciation	
Project IRR	16.22	96	Equity IRR
Project NPV	27.36	Rs. In Lacs	Equity NPV
Project Payback	6.14	Years	Equity Payback
Estimated Project Cost	61.7	Rs. In lac	Estimated Project Cost
Average PV Generation	7518	kWh/hr	

		Back
Project Cost without Subsidy	61.7	Rs. In Lacs
yback	3.68	Years
v	35.16	Rs. In Lacs
u (29.91	96

Back to DGPV Calculator

HOME DGPV CALCULATOR

Download PDF

Back to DGPV Calculator

DGPV Calculator

DG PV CALCULATOR

Optimal Size of Diesel Genset With Roof	top Solar PV and Storage Full Load Sizing	
Recommended DG Capacity	675	kW
Recommended BESS Capacity	5956	AH
Required Area of Rooftop for complete solarization	8100	Sq. Meter
Recommended PV Capacity	53	kW

Depreciation Type -

Financial Reco	mmendation For Stra	ght Line Depreciation			
Project IRR	14.36	96	Equity IRR	25.82	96
Project NPV	18.79	Rs. In Lacs	Equity NPV	29.47	Rs. In Lacs
Project Payback	6.95	Years	Equity Payback	4.26	Years
Estimated Project Cost	65.27	Rs. In lac	Estimated Project Cost without Subsidy	65.27	Rs. In Lacs
Average PV Generation	7517.58	kWh/hr			Back
Pulkit.d@ahasolar.in	"Presentation to GIZ	" at Ahmedabad (India); 27 Nov'20			

Graphs

DG PV CALCULATOR

AHA

Website Link

https://dgpv.ahasolar.in/users

Pulkit.d@ahasolar.in | "Presentation to GIZ" at Ahmedabad (India); 27 Nov'20

Case Study Analysis

Case Study – I

- Type: Commercial, Delhi- NCR
- DG: 500 kVA
 - Nos. 2
- Summary findings of the DG set usage analysis:

Descriptions	Values	
Total runtime of DG set in the year (in hours)	:	290
Average runtime in a day (in hours)	:	I
Total diesel consumption in a year (in ltrs.)	:	14,075
Frequency of Diesel supply in a year (in nos.)	:	16
Average diesel consumption in a day (in ltrs.)	:	38.5

Conclusion: High Potential User Segment for Integrating DG with Solar PV

Analysis: Back-up power requirement is high, Diesel Consumption is high, DG is available. So, Business Model 2: DG is integrated with PV to reduce fuel consumption and Cost

Case Study Analysis

Case Study – II

- Type: Industrial, Delhi NCR
- DG: 1010 kVA
 - Nos. 2
- Summary findings of the DG set usage analysis:

Descriptions	Values	
Average Grid outage (in hours / day)	:	2
Average Energy Consumption (in kWh / month)	:	9,00,000
Solar Installation Potential (in kW)	:	600
Average time lag of equipment during DG start (in mins.)		3 – 5

Conclusion: High Potential User Segment for Integrating DG with Solar PV and Storage

Analysis: Back-up power requirement is high, Diesel Consumption is high, DG is available. Critical machineries run on DG and hence cannot be replaced.

So, Business Model 3: DG is integrated with PV and Storage to reduce fuel consumption and Cost as well as uninterrupted power supply

Case Study Analysis

Case Study – III

- Type: Commercial, Jharkhand
- DG: 250, 500 kVA
 - Nos. 2 (250 kVA), I (500 kVA)

Summary findings of the DG set usage analysis:

Descriptions	DG - I (250 KVA)	DG - 2 (500 KVA)	DG - 3 (250 KVA)
Total Generation (in kWh) in the investigated period of 30 days	303	3159	I
Average Generation (in kWh) per day	10.45	108.94	0.03
Maximum Generation (in kWh) per day	134.45	731.84	0.36
Total Runtime (in hours)	1.52	7.90	0.00
Average Runtime (in hours) per day	0.05	0.27	0.00

Conclusion: Medium Potential User Segment for Integrating DG with Solar PV

Analysis: Back-up power requirement is high, Diesel Consumption is high, DG is available. Critical loads require DG as backup and hence, cannot be replaced.

So, Business Model 3: DG is integrated with PV to reduce fuel consumption and Cost as well as uninterrupted power supply

Pulkit.d@ahasolar.in | "Presentation to GIZ" at Ahmedabad (India); 27 Nov'20

Data Analysis - Case Study I

76

ę

Ch.

2019

7665

2019

2018 2019

(IN LTRS.)

2018 2019

"Presentation to GIZ" at Ahmedabad (India); 27 Nov'20 Pulkit.d@ahasolar.in |

Data Analysis Graphs – Case Study III

DG Generation (in kWh) Building wise Solar Generation (in kWh) 900.00 830.79 0 800.00 0 700.000 600.00 600.00 400.00 300.00 200.00 200.00 100.00 0.00 24-Jan-20 26-Jan-20 27-Jan-20 28-Jan-20 29-Jan-20 30-Jan-20 3 I-Jan-20 I-Feb-20 2-Feb-20 3-Feb-20 4-Feb-20 6-Feb-20 7-Feb-20 8-Feb-20 9-Feb-20 I 0-Feb-20 II-Feb-20 I 3-Feb-20 I 7-Feb-20 I 9-Feb-20 I 5-Feb-20 2 I -Jan-20 22-Jan-20 23-Jan-20 25-Jan-20 5-Feb-20 I 2-Feb-20 l 4-Feb-20 |8-Feb-20 l 6-Feb-20 Community hall Solar (50 kW) CPEI BLDG Solar (45 kW) Date R&D Building Solar (40 kW) STC Building Solar (20 kW)

Generation (in kWh)

АНА